Das Gesundheitswesen , Thieme Verlag Heft 3-2023, Jahrgang 85) ISSN 1439-4421 Seite(n) 175 bis 180 DOI: 10.1055/a-1806-0707 CareLit-Dokument-Nr: 319961 |
|
Zusammenfassung Ziel der Studie Ziel des Vorhabens ist die Untersuchung regionaler Unterschiede in der Konzentration von Thyreoidea-stimulierendem Hormon (TSH), freiem Thyroxin (fT4) und des Jodstatus in komparablen deutschen und europäischen Kohortenstudien. Methodik Die geschlechts- und altersstratifizierten TSH-, fT4- und Urin-Jodkonzentrationen der anamnestisch schilddrüsengesunden Teilnehmer (Altersgruppe 45–75 Jahre) der HNR (Heinz Nixdorf Recall) Studie im Ruhrgebiet Deutschlands, der süddeutschen KORA (Kooperative Gesundheitsforschung in der Region Augsburg) und nordostdeutschen SHIP (Study of Health in Pomerania) Studie sowie der norwegischen HUNT (Nord-Trøndelag Health) Studie (Altersgruppe 40–79 Jahre), der englischen EPIC (European Prospective Investigation of Cancer)-Norfolk Studie und der niederländischen Rotterdam Studie wurden miteinander verglichen. Der TSH-Referenzbereich für die HNR Studienpopulation wurde berechnet und der KORA und SHIP Studie gegenübergestellt. Ergebnisse Regionale Unterschiede zeigten in der Altersgruppe der 45- bis 75- Jährigen einen stärkeren Einfluss auf die TSH- und fT4-Konzentrationen als das Geschlecht und das Alter der Probanden. Die geschätzte Differenz der Mediane, gemessen an der HNR Studie, war mit −0,47 (95% KI: −0,53; −0,41) für die Männer und −0,41 (−0,53; −0,41) für die Frauen in der SHIP Studie am geringsten. Die Rotterdam Studie wies sowohl für Männer als auch Frauen die höchste Differenz der Mediane (Männer: 0,56 mit 0,44; 0,68 und Frauen: 0,62 mit 0,46; 0,78) auf. Die geringsten medianen TSH-Konzentrationen wurden, über alle betrachteten Alterskategorien, in den deutschen Kohorten beobachtet. Schlussfolgerung Der Vergleich der Schilddrüsenfunktionsparameter und Jod bei älteren Probanden zwischen sechs vergleichbaren Kohortenstudien aus Deutschland und Europa zeigte einen bedeutenden Einfluss der Region, welcher die Geschlechts- und Altersabhängigkeit der Parameter überstieg. Abstract Aim of the study The aim of the project was to investigate regional differences in thyroid stimulating hormone (TSH), and free thyroxine (fT4) concentrations and iodine status in comparable German and European cohort studies. Methods Sex- and age-stratified TSH, fT4, and urine iodine concentrations of thyroid-healthy participants (age group 45–75 years) of the HNR (Heinz Nixdorf Recall) Study in the Ruhr region of Germany, the southern German KORA (Cooperative Health Research in the Augsburg Region) and northeastern German SHIP (Study of Health in Pomerania) studies, as well as the Norwegian HUNT (Nord-Trøndelag Health) study (age group 40–79 years), the English EPIC (European Prospective Investigation of Cancer)-Norfolk study, and the Dutch Rotterdam study were compared. The TSH reference range for the HNR study population was calculated and compared to the KORA and SHIP studies. Results Regional differences showed a stronger influence on TSH and fT4 concentrations than sex and age of the subjects in the 45- to 75-year age group. The estimated difference in medians, as measured by the HNR study, was lowest in the SHIP study, −0.47 (95% CI: −0.53; −0.41) for men and −0.41 (−0.53; −0.41) for women. The Rotterdam study had the highest difference in medians for both men and women (men: 0.56 with 0.44; 0.68 and women: 0.62 with 0.46; 0.78). The lowest median TSH concentrations, across all age categories considered, were seen in the German cohorts. Conclusions Comparison of thyroid function parameters and iodine in elderly subjects between six comparable cohort studies from Germany and Europe showed a significant influence of region, which exceeded the sex and age dependence of the parameters. Schlüsselwörter Thyreoidea-stimulierendes Hormon - Jod - Referenzbereich - Alter - Geschlecht Key words thyroid stimulating hormone - iodine - reference range - age - sex * geteilte Letztautorenschaft 04 October 2022 © 2022. Thieme. All rights reserved. Georg Thieme Verlag Rüdigerstraße 14, 70469 Stuttgart, Germany Literatur 1 Hollowell JG, Staehling NW, Flanders WD. et al. Serum TSH, T(4), and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). The Journal of clinical endocrinology and metabolism 2002; 87: 489-499 DOI: 10.1210/jcem.87.2.8182. CrossrefPubMedGoogle Scholar 2 Gesing A, Lewinski A, Karbownik-Lewinska M. The thyroid gland and the process of aging; what is new?. Thyroid research 2012; 5: 16 DOI: 10.1186/1756-6614-5-16. CrossrefPubMedGoogle Scholar 3 Surks MI, Hollowell JG. Age-specific distribution of serum thyrotropin and antithyroid antibodies in the US population: implications for the prevalence of subclinical hypothyroidism. The Journal of clinical endocrinology and metabolism 2007; 92: 4575-4582 DOI: 10.1210/jc.2007-1499. CrossrefPubMedGoogle Scholar 4 WHO. Assessment of iodine deficiency disorders and monitoring their elimination: a guide for programme managers. 2nd ed. In: WHO; 2001 Google Scholar 5 Stang A, Moebus S, Dragano N. et al. Baseline recruitment and analyses of nonresponse of the Heinz Nixdorf Recall Study: identifiability of phone numbers as the major determinant of response. European journal of epidemiology 2005; 20: 489-496 CrossrefPubMedGoogle Scholar 6 Schmermund A, Möhlenkamp S, Stang A. et al. Assessment of clinically silent atherosclerotic disease and established and novel risk factors for predicting myocardial infarction and cardiac death in healthy middle-aged subjects: Rationale and design of the Heinz Nixdorf RECALL Study. American Heart Journal 2002; 144: 212-218 DOI: 10.1067/mhj.2002.123579. CrossrefPubMedGoogle Scholar 7 Meisinger C, Ittermann T, Wallaschofski H. et al. Geographic variations in the frequency of thyroid disorders and thyroid peroxidase antibodies in persons without former thyroid disease within Germany. European journal of endocrinology 2012; 167: 363-371 DOI: 10.1530/eje-12-0111. CrossrefPubMedGoogle Scholar 8 Boekholdt SM, Titan SM, Wiersinga WM. et al. Initial thyroid status and cardiovascular risk factors: the EPIC-Norfolk prospective population study. Clinical endocrinology 2010; 72: 404-410 DOI: 10.1111/j.1365-2265.2009.03640.x. CrossrefPubMedGoogle Scholar 9 Chaker L, Korevaar TI, Medici M. et al. Thyroid Function Characteristics and Determinants: The Rotterdam Study. Thyroid: official journal of the American Thyroid Association 2016; 26: 1195-1204 DOI: 10.1089/thy.2016.0133. CrossrefPubMedGoogle Scholar 10 Bjoro T, Holmen J, Kruger O. et al. Prevalence of thyroid disease, thyroid dysfunction and thyroid peroxidase antibodies in a large, unselected population. The Health Study of Nord-Trondelag (HUNT). European journal of endocrinology 2000; 143: 639-647 CrossrefPubMedGoogle Scholar 11 Volzke H, Alte D, Kohlmann T. et al. Reference intervals of serum thyroid function tests in a previously iodine-deficient area. Thyroid: official journal of the American Thyroid Association 2005; 15: 279-285 DOI: 10.1089/thy.2005.15.279. CrossrefPubMedGoogle Scholar 12 Burkhardt K, Ittermann T, Heier M. et al. TSH-reference range of adults: results from the population-based study KORA F4. Deutsche medizinische Wochenschrift (1946) 2014; 139: 317-322 DOI: 10.1055/s-0033-1360046. Article in Thieme ConnectPubMedGoogle Scholar 13 Ristic-Medic D, Piskackova Z, Hooper L. et al. Methods of assessment of iodine status in humans: a systematic review. The American journal of clinical nutrition 2009; 89: 2052s-2069s DOI: 10.3945/ajcn.2009.27230H. CrossrefPubMedGoogle Scholar 14 Medici M, Ghassabian A, Visser W. et al. Women with high early pregnancy urinary iodine levels have an increased risk of hyperthyroid newborns: the population-based Generation R Study. Clinical endocrinology 2014; 80: 598-606 DOI: 10.1111/cen.12321. CrossrefPubMedGoogle Scholar 15 Meng W, Scriba PC. Jodversorgung in Deutschland: Probleme und erforderliche Maßnahmen – Update 2002. Dtsch Arztebl International 2002; 99: 2560 PubMedGoogle Scholar 16 Knudsen N, Bulow I, Jorgensen T. et al. Comparative study of thyroid function and types of thyroid dysfunction in two areas in Denmark with slightly different iodine status. European journal of endocrinology 2000; 143: 485-491 CrossrefPubMedGoogle Scholar 17 Hötzel D, Scriba PC. Jodversorgung in der Bundesrepublik Deutschland: Probleme und Lösungsmöglichkeiten. Vitamine, Mineralstoffe, Spurenelemente 1987; 25-33 PubMedGoogle Scholar 18 Anonym. Nationale Verzehrsstudie II. Ergebnisbericht, Teil 2: Die bundesweite Befragung zur Ernährung von Jugendlichen und Erwachsenen. 2008. PubMed 19 Thienpont LM, Van Uytfanghe K, Van Houcke S. Standardization activities in the field of thyroid function tests: a status report. Clinical chemistry and laboratory medicine 2010; 48: 1577-1583 DOI: 10.1515/cclm.2010.321. CrossrefPubMedGoogle Scholar
{{detailinfo.data.api.data.document[0].apa}}
{{detailinfo.data.api.data.document[0].vancouver}}
{{detailinfo.data.api.data.document[0].harvard}}