AINS Anästhesiologie · Intensivmedizin · Notfallmedizin · Schmerztherapie, Thieme Verlag Heft 11/12-2023, Jahrgang 58) ISSN 1439-1074 Seite(n) 640 bis 653 DOI: 10.1055/a-2006-9923 CareLit-Dokument-Nr: 319961 |
|
Die Messung der Narkosetiefe und Muskelrelaxation sind seit Jahren etablierte Routineverfahren während einer Allgemeinanästhesie. Eine Quantifizierung intraoperativer Nozizeption ist dagegen noch immer weitgehend unmöglich, und die Routineanwendung aller bisher erhältlichen Methoden ist nicht unproblematisch. Dieser Artikel erklärt methodologische Gemeinsamkeiten, aber auch spezifische Aspekte verschiedener kommerzieller Lösungsvorschläge zur perioperativen Algesimetrie. Abstract The measurement of anaesthetic depth and muscle relaxation have been routine procedures during general anaesthesia for years. Quantification of intraoperative nociception, on the other hand, is still largely impossible. Various methods have been tested and commercialised for more than 10 years. However, a real breakthrough has not yet been achieved and the routine application of all methods available so far is not without problems. This article explains methodological similarities, but also points to specific aspects of various commercial solutions for perioperative algesimetry. Kernaussagen Blutdruck und Herzfrequenz sind oft nicht hinreichend in der Lage, perioperative Schmerzen eindeutig widerzuspiegeln. Diese Surrogatparameter sind zur Algesimetrie relativ ungeeignet. Perioperative Algesimetrie beruht oft auf der Messung einer hypothetischen, nozizeptionsbedingten physiologischen Stressantwort. Nahezu alle erhältlichen Monitore können intraoperative Schmerzreize abbilden – teilweise besser als Blutdruck und Herzfrequenz. Intraoperative Algesimetrie kann möglicherweise den Opioidverbrauch während einer Narkose senken. Der klinische Outcome-Vorteil intraoperativer Algesimetrie ist allerdings nicht unumstritten und bedarf weiterer Untersuchungen. Schlüsselwörter intraoperative Nozizeption - Schmerzmessung - Schmerzwahrnehmung - Analgesie Keywords intraoperative nociception - pain measuring - pain perception - analgesia 06 December 2023 © 2023. Thieme. All rights reserved. Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany Literatur 1 Loeser JD, Treede RD. The Kyoto protocol of IASP basic pain terminology. Pain 2008; 137: 473-477 DOI: 10.1016/j.pain.2008.04.025. (PMID: 18583048) CrossrefPubMedGoogle Scholar 2 Buvanendran A, Fiala J, Patel KA. et al. The incidence and severity of postoperative pain following inpatient surgery. Pain Med 2015; 16: 2277-2283 DOI: 10.1111/pme.12751. (PMID: 25917518) CrossrefPubMedGoogle Scholar 3 Pogatzki-Zahn EM, Segelcke D, Schug SA. Postoperative pain-from mechanisms to treatment. Pain Rep 2017; 2: e588 DOI: 10.1097/PR9.0000000000000588. (PMID: 29392204) CrossrefPubMedGoogle Scholar 4 Ledowski T, Reimer M, Chavez V. et al. Effects of acute postoperative pain on catecholamine plasma levels, hemodynamic parameters, and cardiac autonomic control. Pain 2012; 153: 759-764 DOI: 10.1016/j.pain.2011.11.002. (PMID: 22305628) CrossrefPubMedGoogle Scholar 5 Ledowski T, Bromilow J, Paech MJ. et al. Skin conductance monitoring compared with Bispectral Index to assess emergence from total i. v. anaesthesia using propofol and remifentanil. Br J Anaesth 2006; 97: 817-821 DOI: 10.1093/bja/ael278. CrossrefPubMedGoogle Scholar 6 Ledowski T, Bein B, Hanss R. et al. Pseudocholinesterase activity increases and heart rate variability decreases with preoperative anxiety. Eur J Anaesthesiol 2005; 22: 289-292 DOI: 10.1017/s0265021505000487. (PMID: 15892407) CrossrefPubMedGoogle Scholar 7 Hocker J, Broch O, Grasner JT. et al. Surgical stress index in response to pacemaker stimulation or atropine. Br J Anaesth 2010; 105: 150-154 DOI: 10.1093/bja/aeq114. (PMID: 20573632) CrossrefPubMedGoogle Scholar 8 Ledowski T, Stein J, Albus S. et al. The influence of age and sex on the relationship between heart rate variability, haemodynamic variables and subjective measures of acute post-operative pain. Eur J Anaesthesiol 2011; 28: 433-437 DOI: 10.1097/EJA.0b013e328343d524. CrossrefPubMedGoogle Scholar 9 Jeanne M, Clement C, De Jonckheere J. et al. Variations of the analgesia nociception index during general anaesthesia for laparoscopic abdominal surgery. J Clin Monit Comput 2012; 26: 289-294 DOI: 10.1007/s10877-012-9354-0. CrossrefPubMedGoogle Scholar 10 Poyhonen M, Syvaoja S, Hartikainen J. et al. The effect of carbon dioxide, respiratory rate and tidal volume on human heart rate variability. Acta Anaesthesiol Scand 2004; 48: 93-101 DOI: 10.1111/j.1399-6576.2004.00272.x. (PMID: 14674979) CrossrefPubMedGoogle Scholar 11 Gruenewald M, Herz J, Schoenherr T. et al. Measurement of the nociceptive balance by Analgesia Nociception Index and Surgical Pleth Index during sevoflurane-remifentanil anesthesia. Minerva Anestesiol 2015; 81: 480-489 (PMID: 25032676) PubMedGoogle Scholar 12 Kommula LK, Bansal S, Umamaheswara Rao GS. Analgesia nociception index monitoring during supratentorial craniotomy. J Neurosurg Anesthesiol 2019; 31: 57-61 DOI: 10.1097/ANA.0000000000000464. (PMID: 28991059) CrossrefPubMedGoogle Scholar 13 Shahiri TS, Richebe P, Richard-Lalonde M. et al. Description of the validity of the Analgesia Nociception Index (ANI) and Nociception Level Index (NOL) for nociception assessment in anesthetized patients undergoing surgery: a systematized review. J Clin Monit Comput 2022; 36: 623-635 DOI: 10.1007/s10877-021-00772-3. (PMID: 34783941) CrossrefPubMedGoogle Scholar 14 Koprulu AS, Haspolat A, Gul YG. et al. Can postoperative pain be predicted? New parameter: analgesia nociception index. Turk J Med Sci 2020; 50: 49-58 DOI: 10.3906/sag-1811-194. (PMID: 31731328) CrossrefPubMedGoogle Scholar 15 Ledowski T, Tiong WS, Lee C. et al. Analgesia nociception index: evaluation as a new parameter for acute postoperative pain. Br J Anaesth 2013; 111: 627-629 DOI: 10.1093/bja/aet111. (PMID: 23611914) CrossrefPubMedGoogle Scholar 16 Issa R, Julien M, Decary E. et al. Evaluation of the analgesia nociception index (ANI) in healthy awake volunteers. Can J Anaesth 2017; 64: 828-835 DOI: 10.1007/s12630-017-0887-z. (PMID: 28432612) CrossrefPubMedGoogle Scholar 17 Jeanne M, Delecroix M, De Jonckheere J. et al. Variations of the analgesia nociception index during propofol anesthesia for total knee replacement. Clin J Pain 2014; 30: 1084-1088 DOI: 10.1097/AJP.0000000000000083. CrossrefPubMedGoogle Scholar 18 Ledowski T, Averhoff L, Tiong WS. et al. Analgesia Nociception Index (ANI) to predict intraoperative haemodynamic changes: results of a pilot investigation. Acta Anaesthesiol Scand 2014; 58: 74-79 DOI: 10.1111/aas.12216. (PMID: 24164336) CrossrefPubMedGoogle Scholar 19 Jozefowicz E, Sabourdin N, Fontaine V. et al. Prediction of reactivity during tracheal intubation by pre-laryngoscopy tetanus-induced ANI variation. J Clin Monit Comput 2022; 36: 93-101 DOI: 10.1007/s10877-020-00624-6. CrossrefPubMedGoogle Scholar 20 Sabourdin N, Arnaout M, Louvet N. et al. Pain monitoring in anesthetized children: first assessment of skin conductance and analgesia-nociception index at different infusion rates of remifentanil. Paediatr Anaesth 2013; 23: 149-155 DOI: 10.1111/pan.12071. (PMID: 23170802) CrossrefPubMedGoogle Scholar 21 Sabourdin N, Burey J, Tuffet S. et al. Analgesia nociception index-guided remifentanil versus standard care during propofol anesthesia: a randomized controlled trial. J Clin Med 2022; 11: 333 DOI: 10.3390/jcm11020333. CrossrefPubMedGoogle Scholar 22 Tribuddharat S, Sathitkarnmanee T, Sukhong P. et al. Comparative study of analgesia nociception index (ANI) vs. standard pharmacokinetic pattern for guiding intraoperative fentanyl administration among mastectomy patients. BMC Anesthesiol 2021; 21: 50 DOI: 10.1186/s12871-021-01272-2. CrossrefPubMedGoogle Scholar 23 Szental JA, Webb A, Weeraratne C. et al. Postoperative pain after laparoscopic cholecystectomy is not reduced by intraoperative analgesia guided by analgesia nociception index (ANI(R)) monitoring: a randomized clinical trial. Br J Anaesth 2015; 114: 640-645 DOI: 10.1093/bja/aeu411. (PMID: 25540069) CrossrefPubMedGoogle Scholar 24 Kunst AM, Wulf H, Stegemann B. et al. Intraoperative Analgesiesteuerung: ANI vs. „standard care“ bei Hysterektomien unter Sevoflurannarkose. Anaesthesiologie 2023; 72: 477-487 DOI: 10.1007/s00101-023-01288-y. CrossrefPubMedGoogle Scholar 25 Upton HD, Ludbrook GL, Wing A. et al. Intraoperative “analgesia nociception index”-guided fentanyl administration during sevoflurane anesthesia in lumbar discectomy and laminectomy: a randomized clinical trial. Anesth Analg 2017; 125: 81-90 DOI: 10.1213/ANE.0000000000001984. CrossrefPubMedGoogle Scholar 26 Ramos-Luengo A, Gardeta Pallares A, Asensio Merino F. Usefulness of ANI (analgesia nociception index) monitoring for outpatient saphenectomy surgery outcomes: an observational study. J Clin Monit Comput 2021; 35: 491-497 DOI: 10.1007/s10877-020-00491-1. (PMID: 32107719) CrossrefPubMedGoogle Scholar 27 Boselli E, Daniela-Ionescu M, Begou G. et al. Prospective observational study of the non-invasive assessment of immediate postoperative pain using the analgesia/nociception index (ANI). Br J Anaesth 2013; 111: 453-459 DOI: 10.1093/bja/aet110. (PMID: 23592690) CrossrefPubMedGoogle Scholar 28 Chanques G, Tarri T, Ride A. et al. Analgesia nociception index for the assessment of pain in critically ill patients: a diagnostic accuracy study. Br J Anaesth 2017; 119: 812-820 DOI: 10.1093/bja/aex210. (PMID: 29121287) CrossrefPubMedGoogle Scholar 29 Ahonen J, Jokela R, Uutela K. et al. Surgical stress index reflects surgical stress in gynaecological laparoscopic day-case surgery. Br J Anaesth 2007; 98: 456-461 DOI: 10.1093/bja/aem035. (PMID: 17350969) CrossrefPubMedGoogle Scholar 30 Ledowski T, Burke J, Hruby J. Surgical pleth index: prediction of postoperative pain and influence of arousal. Br J Anaesth 2016; 117: 371-374 DOI: 10.1093/bja/aew226. (PMID: 27543532) CrossrefPubMedGoogle Scholar 31 Funcke S, Sauerlaender S, Pinnschmidt HO. et al. Validation of innovative techniques for monitoring nociception during general anesthesia: a clinical study using tetanic and intracutaneous electrical stimulation. Anesthesiology 2017; 127: 272-283 DOI: 10.1097/ALN.0000000000001670. CrossrefPubMedGoogle Scholar 32 Ledowski T, Sommerfield D, Slevin L. et al. Surgical pleth index: prediction of postoperative pain in children?. Br J Anaesth 2017; 119: 979-983 DOI: 10.1093/bja/aex300. (PMID: 29028932) CrossrefPubMedGoogle Scholar 33 Ledowski T, Schneider M, Gruenewald M. et al. Surgical pleth index: prospective validation of the score to predict moderate-severe postoperative pain. Br J Anaesth 2019; 123: e328-e332 CrossrefPubMedGoogle Scholar 34 Koschmieder KC, Funcke S, Shadloo M. et al. Validation of three nociception indices to predict immediate postoperative pain before emergence from general anaesthesia: a prospective double-blind, observational study. Br J Anaesth 2023; 130: 477-484 DOI: 10.1016/j.bja.2022.11.024. CrossrefPubMedGoogle Scholar 35 Wang M, Wang X, Bao R. et al. Predictive value of the surgical pleth index for the hemodynamic responses to trachea intubation and skin incision. J Clin Monit Comput 2020; 34: 1303-1309 DOI: 10.1007/s10877-019-00425-6. (PMID: 31808060) CrossrefPubMedGoogle Scholar 36 Guo J, Zhu W, Shi Q. et al. Effect of surgical pleth index-guided analgesia versus conventional analgesia techniques on fentanyl consumption under multimodal analgesia in laparoscopic cholecystectomy: a prospective, randomized and controlled study. BMC Anesthesiol 2021; 21: 167 DOI: 10.1186/s12871-021-01366-x. (PMID: 34088270) CrossrefPubMedGoogle Scholar 37 Won YJ, Oh SK, Lim BG. et al. Effect of surgical pleth index-guided remifentanil administration on perioperative outcomes in elderly patients: a prospective randomized controlled trial. BMC Anesthesiol 2023; 23: 57 DOI: 10.1186/s12871-023-02011-5. (PMID: 36803564) CrossrefPubMedGoogle Scholar 38 Park JH, Lim BG, Kim H. et al. Comparison of surgical pleth index-guided analgesia with conventional analgesia practices in children: a randomized controlled trial. Anesthesiology 2015; 122: 1280-1287 DOI: 10.1097/ALN.0000000000000650. CrossrefPubMedGoogle Scholar 39 Gruenewald M, Willms S, Broch O. et al. Sufentanil administration guided by surgical pleth index vs standard practice during sevoflurane anaesthesia: a randomized controlled pilot study. Br J Anaesth 2014; 112: 898-905 DOI: 10.1093/bja/aet485. CrossrefPubMedGoogle Scholar 40 Won YJ, Lim BG, Lee SH. et al. Comparison of relative oxycodone consumption in surgical pleth index-guided analgesia versus conventional analgesia during sevoflurane anesthesia: a randomized controlled trial. Medicine 2016; 95: e4743 DOI: 10.1097/MD.0000000000004743. CrossrefPubMedGoogle Scholar 41 Won YJ, Lim BG, Kim YS. et al. Usefulness of surgical pleth index-guided analgesia during general anesthesia: a systematic review and meta-analysis of randomized controlled trials. J Int Med Res 2018; 46: 4386-4398 DOI: 10.1177/0300060518796749. CrossrefPubMedGoogle Scholar 42 Funcke S, Pinnschmidt HO, Wesseler S. et al. Guiding opioid administration by 3 different analgesia nociception monitoring indices during general anesthesia alters intraoperative sufentanil consumption and stress hormone release: a randomized controlled pilot study. Anesth Analg 2020; 130: 1264-1273 DOI: 10.1213/ANE.0000000000004388. CrossrefPubMedGoogle Scholar 43 Ledowski T, Ang B, Schmarbeck T. et al. Monitoring of sympathetic tone to assess postoperative pain: skin conductance vs surgical stress index. Anaesthesia 2009; 64: 727-731 DOI: 10.1111/j.1365-2044.2008.05834.x. (PMID: 19183409) CrossrefPubMedGoogle Scholar 44 Ledowski T, Pascoe E, Ang B. et al. Monitoring of intra-operative nociception: skin conductance and surgical stress index versus stress hormone plasma levels. Anaesthesia 2010; 65: 1001-1006 DOI: 10.1111/j.1365-2044.2010.06480.x. (PMID: 20712804) CrossrefPubMedGoogle Scholar 45 Choo EK, Magruder W, Montgomery CJ. et al. Skin conductance fluctuations correlate poorly with postoperative self-report pain measures in school-aged children. Anesthesiology 2010; 113: 175-182 DOI: 10.1097/ALN.0b013e3181de6ce9. CrossrefPubMedGoogle Scholar 46 Coquin J, Tafer N, Mazerolles M. et al. Monitorage de la dilatation pupillaire dans l’évaluation d’une tolérance aiguë au rémifentanil en chirurgie cardiaque. Ann Fr Anesth Réanim 2009; 28: 930-935 DOI: 10.1016/j.annfar.2009.07.073. CrossrefPubMedGoogle Scholar 47 Paulus J, Roquilly A, Beloeil H. et al. Pupillary reflex measurement predicts insufficient analgesia before endotracheal suctioning in critically ill patients. Crit Care 2013; 17: R161 DOI: 10.1186/cc12840. CrossrefPubMedGoogle Scholar 48 Kantor E, Montravers P, Longrois D. et al. Pain assessment in the postanaesthesia care unit using pupillometry: a cross-sectional study after standard anaesthetic care. Eur J Anaesthesiol 2014; 31: 91-97 DOI: 10.1097/01.EJA.0000434966.96165.c9. (PMID: 24225726) CrossrefPubMedGoogle Scholar 49 Duale C, Julien H, Pereira B. et al. Pupil diameter during postanesthetic recovery is not influenced by postoperative pain, but by the intraoperative opioid treatment. J Clin Anesth 2015; 27: 23-32 DOI: 10.1016/j.jclinane.2014.09.006. CrossrefPubMedGoogle Scholar 50 Charier DJ, Zantour D, Pichot V. et al. Assessing pain using the variation coefficient of pupillary diameter. J Pain 2017; 18: 1346-1353 DOI: 10.1016/j.jpain.2017.06.006. (PMID: 28711635) CrossrefPubMedGoogle Scholar 51 Duceau B, Baubillier M, Bouroche G. et al. Pupillary reflex for evaluation of thoracic paravertebral block: a prospective observational feasibility study. Anesth Analg 2017; 125: 1342-1347 DOI: 10.1213/ANE.0000000000002003. (PMID: 28489642) CrossrefPubMedGoogle Scholar 52 Neice AE, Behrends M, Bokoch MP. et al. Prediction of opioid analgesic efficacy by measurement of pupillary unrest. Anesth Analg 2017; 124: 915-921 DOI: 10.1213/ANE.0000000000001728. (PMID: 27941575) CrossrefPubMedGoogle Scholar 53 Sabourdin N, Barrois J, Louvet N. et al. Pupillometry-guided intraoperative remifentanil administration versus standard practice influences opioid use: a randomized study. Anesthesiology 2017; 127: 284-292 DOI: 10.1097/ALN.0000000000001705. (PMID: 28719527) CrossrefPubMedGoogle Scholar 54 McKay RE, Neice AE, Larson MD. Pupillary unrest in ambient light and prediction of opioid responsiveness: case report on its utility in the management of 2 patients with challenging acute pain conditions. A A Pract 2018; 10: 279-282 DOI: 10.1213/XAA.0000000000000710. (PMID: 29608463) CrossrefPubMedGoogle Scholar 55 Sabourdin N, Giral T, Wolk R. et al. Pupillary reflex dilation in response to incremental nociceptive stimuli in patients receiving intravenous ketamine. J Clin Monit Comput 2018; 32: 921-928 DOI: 10.1007/s10877-017-0072-5. (PMID: 29043601) CrossrefPubMedGoogle Scholar 56 Wildemeersch D, Gios J, Jorens PG. et al. Objective nociceptive assessment in ventilated ICU patients: a feasibility study using pupillometry and the nociceptive flexion reflex. J Vis Exp 2018; (137) 57972 DOI: 10.3791/57972. CrossrefPubMedGoogle Scholar 57 Kim JH, Jwa EK, Choung Y. et al. Comparison of pupillometry with surgical pleth index monitoring on perioperative opioid consumption and nociception during propofol-remifentanil anesthesia: a prospective randomized controlled trial. Anesth Analg 2020; 131: 1589-1598 DOI: 10.1213/ANE.0000000000004958. CrossrefPubMedGoogle Scholar 58 Packiasabapathy S, Rangasamy V, Sadhasivam S. Pupillometry in perioperative medicine: a narrative review. Can J Anaesth 2021; 68: 566-578 DOI: 10.1007/s12630-020-01905-z. (PMID: 33432497) CrossrefPubMedGoogle Scholar 59 Sabourdin N, Peretout JB, Khalil E. et al. Influence of depth of hypnosis on pupillary reactivity to a standardized tetanic stimulus in patients under propofol-remifentanil target-controlled infusion: a crossover randomized pilot study. Anesth Analg 2018; 126: 70-77 DOI: 10.1213/ANE.0000000000001802. (PMID: 28107273) CrossrefPubMedGoogle Scholar 60 Jakuscheit A, Posch MJ, Gkaitatzis S. et al. Utility of nociceptive flexion reflex threshold and bispectral index to predict movement responses under propofol anaesthesia. Somatosens Mot Res 2017; 34: 139-144 DOI: 10.1080/08990220.2017.1343189. (PMID: 28675953) CrossrefPubMedGoogle Scholar 61 Jakuscheit A, Weth J, Lichtner G. et al. Intraoperative monitoring of analgesia using nociceptive reflexes correlates with delayed extubation and immediate postoperative pain: a prospective observational study. Eur J Anaesthesiol 2017; 34: 297-305 DOI: 10.1097/EJA.0000000000000597. CrossrefPubMedGoogle Scholar 62 Rhudy JL, Guereca YM, Kuhn BL. et al. The influence of placebo analgesia manipulations on pain report, the nociceptive flexion reflex, and autonomic responses to pain. J Pain 2018; 19: 1257-1274 DOI: 10.1016/j.jpain.2018.04.012. CrossrefPubMedGoogle Scholar 63 Jensen EW, Valencia JF, Lopez A. et al. Monitoring hypnotic effect and nociception with two EEG-derived indices, qCON and qNOX, during general anaesthesia. Acta Anaesthesiol Scand 2014; 58: 933-941 DOI: 10.1111/aas.12359. CrossrefPubMedGoogle Scholar 64 Melia U, Gabarron E, Agusti M. et al. Comparison of the qCON and qNOX indices for the assessment of unconsciousness level and noxious stimulation response during surgery. J Clin Monit Comput 2017; 31: 1273-1281 DOI: 10.1007/s10877-016-9948-z. CrossrefPubMedGoogle Scholar 65 Pantalacci T, Allaouchiche B, Boselli E. Relationship between ANI and qNOX and between MAC and qCON during outpatient laparoscopic cholecystectomy using remifentanil and desflurane without muscle relaxants: a prospective observational preliminary study. J Clin Monit Comput 2023; 37: 83-91 DOI: 10.1007/s10877-022-00861-x. (PMID: 35445895) CrossrefPubMedGoogle Scholar 66 Boselli E, Fatah A, Ledochowski S. et al. Variations of qCON and qNOX during tracheal suction in ICU patients on sedation and curarization for SARS-CoV2 pneumonia: a retrospective study. J Clin Monit Comput 2023; 37: 1119-1121 DOI: 10.1007/s10877-023-00998-3. CrossrefPubMedGoogle Scholar 67 Martini CH, Boon M, Broens SJ. et al. Ability of the nociception level, a multiparameter composite of autonomic signals, to detect noxious stimuli during propofol-remifentanil anesthesia. Anesthesiology 2015; 123: 524-534 DOI: 10.1097/ALN.0000000000000757. CrossrefPubMedGoogle Scholar 68 Edry R, Recea V, Dikust Y. et al. Preliminary intraoperative validation of the nociception level index: a noninvasive nociception monitor. Anesthesiology 2016; 125: 193-203 DOI: 10.1097/ALN.0000000000001130. (PMID: 27171828) CrossrefPubMedGoogle Scholar 69 Stockle PA, Julien M, Issa R. et al. Validation of the PMD100 and its NOL Index to detect nociception at different infusion regimen of remifentanil in patients under general anesthesia. Minerva Anestesiol 2018; 84: 1160-1168 DOI: 10.23736/S0375-9393.18.12720-9. (PMID: 29756750) CrossrefPubMedGoogle Scholar 70 Meijer F, Honing M, Roor T. et al. Reduced postoperative pain using nociception level-guided fentanyl dosing during sevoflurane anaesthesia: a randomised controlled trial. Br J Anaesth 2020; 125: 1070-1078 DOI: 10.1016/j.bja.2020.07.057. CrossrefPubMedGoogle Scholar 71 Fuica R, Krochek C, Weissbrod R. et al. Reduced postoperative pain in patients receiving nociception monitor guided analgesia during elective major abdominal surgery: a randomized, controlled trial. J Clin Monit Comput 2023; 37: 481-491 DOI: 10.1007/s10877-022-00906-1. CrossrefPubMedGoogle Scholar 72 van der Wal I, Meijer F, Fuica R. et al. Intraoperative use of the machine learning-derived nociception level monitor results in less pain in the first 90 min after surgery. Front Pain Res 2022; 3: 1086862 DOI: 10.3389/fpain.2022.1086862. (PMID: 36700141) CrossrefPubMedGoogle Scholar 73 Niebhagen F, Golde C, Koch T. et al. Beeinflusst NoL-Monitoring den Opioidbedarf bei Da-Vinci-Prostatektomien?. Anaesthesiologie 2022; 71: 683-688 DOI: 10.1007/s00101-022-01126-7. CrossrefPubMedGoogle Scholar 74 Espitalier F, Idrissi M, Fortier A. et al. Impact of Nociception Level (NOL) index intraoperative guidance of fentanyl administration on opioid consumption, postoperative pain scores and recovery in patients undergoing gynecological laparoscopic surgery. A randomized controlled trial. J Clin Anesth 2021; 75: 110497 DOI: 10.1016/j.jclinane.2021.110497. (PMID: 34597955) CrossrefPubMedGoogle Scholar 75 Ruetzler K, Montalvo M, Bakal O. et al. Nociception level index-guided intraoperative analgesia for improved postoperative recovery: a randomized trial. Anesth Analg 2023; 136: 761-771 DOI: 10.1213/ANE.0000000000006351. (PMID: 36727855) CrossrefPubMedGoogle Scholar 76 Chemam S, Cailliau E, Bert D. et al. Nociception level response to calibrated stimulations in children: first assessment of the nociception level index in pediatric anesthesia. Anaesth Crit Care Pain Med 2023; 42: 101207 DOI: 10.1016/j.accpm.2023.101207. (PMID: 36863410) CrossrefPubMedGoogle Scholar 77 Koschmieder KC, Funcke S, Shadloo M. et al. Validation of three nociception indices to predict immediate postoperative pain before emergence from general anaesthesia: a prospective double-blind, observational study. Br J Anaesth 2023; 130: 477-484 DOI: 10.1016/j.bja.2022.11.024. CrossrefPubMedGoogle Scholar 78 Ledowski T, Schlueter P, Hall N. Nociception level index: do intra-operative values allow the prediction of acute postoperative pain?. J Clin Monit Comput 2022; 36: 349-354 DOI: 10.1007/s10877-021-00654-8. (PMID: 33486658) CrossrefPubMedGoogle Scholar
{{detailinfo.data.api.data.document[0].apa}}
{{detailinfo.data.api.data.document[0].vancouver}}
{{detailinfo.data.api.data.document[0].harvard}}