AINS Anästhesiologie · Intensivmedizin · Notfallmedizin · Schmerztherapie, Thieme Verlag Heft 6-2024, Jahrgang 59) ISSN 1439-1074 Seite(n) 368 bis 384 DOI: 10.1055/a-2156-6790 CareLit-Dokument-Nr: 319937 |
|
Das Neurotrauma stellt als Folge einer Gewalteinwirkung auf Strukturen des zentralen sowie peripheren Nervensystems eine klinisch häufige und für das langfristige Outcome der Patienten hochrelevante Krankheitsentität dar. Dieser Beitrag beschreibt das aktuelle Management der beiden wichtigsten Verletzungsmuster des Neurotraumas: das Schädel-Hirn-Trauma und die Wirbelsäulenverletzung mit Rückenmarkbeteiligung. Abstract Neurotrauma results from violence on structures of the central or peripheral nervous system and is a clinically common disease entity with high relevance for patients’ long-term outcome. The application of evidence-based diagnostic and therapeutic concepts aims to minimize secondary injury and thus to improve treatment outcome. This article describes the current management of the two main injury patterns of neurotrauma – traumatic brain and spinal cord injury. Kernaussagen Das Neurotrauma entsteht als Folge einer Gewalteinwirkung auf Strukturen des zentralen oder peripheren Nervensystems. Das Schädel-Hirn-Trauma und das Wirbelsäulentrauma mit Rückenmarkverletzung stellen klinisch häufige und für das langfristige Outcome der Patienten hochrelevante Krankheitsentitäten dar. Die primäre Schädigung ist therapeutisch nicht mehr zu modulieren. Das evidenzbasierte, strukturierte Management des Neurotraumas zielt auf die Modulation der sekundären Schädigung ab und soll damit die Letalität reduzieren sowie das funktionelle Langzeit-Outcome verbessern. Konservative (intensivmedizinische) und therapeutische (chirurgische) Maßnahmen sollen beim schweren Neurotrauma in spezialisierten Traumazentren Anwendung finden. Eine engmaschige klinische Verlaufskontrolle, repetitiv durchgeführte Bildgebungen und eine interdisziplinäre Abstimmung im Trauma-Team zur Festlegung invasiver diagnostischer und therapeutischer Maßnahmen stellen die Leitsäulen des Konzepts dar. Die Behandlung von Patienten mit schwerem Neurotrauma erfordert ein hohes Maß an Expertise und Erfahrung in einem interdisziplinären Behandlungsteam. Daher sollten diese Patienten frühestmöglich in spezialisierten Traumazentren behandelt werden. Schlüsselwörter Schädel-Hirn-Trauma - Wirbelsäulentrauma - Polytrauma - neurokognitives Outcome Keywords traumatic brain injury - spinal trauma - polytrauma - neurocognitive outcome 24 June 2024 © 2024. Thieme. All rights reserved. Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany Literatur 1 Hoppe K, Klingler W. Traumatic brain injury: pathophysiology and emergency management. Anästh Intensivmed 2021; 62: 118-127 DOI: 10.19224/ai2021.118. CrossrefPubMedGoogle Scholar 2 Hagebusch P, Pingel A, Kandziora F. et al. Das Schädel-Hirn-Trauma im Erwachsenenalter. Notfallmedizin up2date 2020; 15: 59-74 DOI: 10.1055/a-0958-0649. Article in Thieme ConnectPubMedGoogle Scholar 3 Picetti E, Bouzat P, Cattani L. et al. Perioperative management of severe brain injured patients. Minerva Anestesiol 2022; 88: 380-389 DOI: 10.23736/S0375-9393.21.15927-9. (PMID: 34636222) CrossrefPubMedGoogle Scholar 4 Deutsche Gesellschaft für Unfallchirurgie e.V. (DGU). S3-Leitlinie Polytrauma/Schwerverletzten-Behandlung (AWMF Registernummer 187–023), Version 4.1. 2022 Accessed April 19, 2024 at: https://www.awmf.org/leitlinien/detail/ll/187–023.html PubMedGoogle Scholar 5 Carney N, Totten AM, O’Reilly C. et al. Guidelines for the Management of Severe Traumatic Brain Injury. 4th ed. Neurosurgery 2017; 80: 6-15 DOI: 10.1227/NEU.0000000000001432. (PMID: 27654000) CrossrefPubMedGoogle Scholar 6 Udekwu P, Kromhout-Schiro S, Vaslef S. et al. Glasgow Coma Scale score, mortality, and functional outcome in head-injured patients. J Trauma 2004; 56: 1084-1089 DOI: 10.1097/01.ta.0000124283.02605.a5. (PMID: 15179250) CrossrefPubMedGoogle Scholar 7 CRASH-3 trial collaborators. Effects of tranexamic acid on death, disability, vascular occlusive events and other morbidities in patients with acute traumatic brain injury (CRASH-3): a randomised, placebo-controlled trial. Lancet 2019; 394: 1713-1723 DOI: 10.1016/S0140-6736(19)32233-0. (PMID: 31623894) CrossrefPubMedGoogle Scholar 8 Deutsche Gesellschaft für Neurologie. Intrakranieller Druck (ICP). 2023 Accessed April 22, 2024 at: https://register.awmf.org/assets/guidelines/030–105l_S1_Intrakranieller-Druck-ICP_2023–04.pdf PubMedGoogle Scholar 9 Robba C, Graziano F, Guglielmi A. et al. Treatments for intracranial hypertension in acute brain-injured patients: grading, timing, and association with outcome. Data from the SYNAPSE-ICU study. Intensive Care Med 2023; 49: 50-61 DOI: 10.1007/s00134-022-06937-1. (PMID: 36622462) CrossrefPubMedGoogle Scholar 10 Hawryluk GWJ, Aguilera S, Buki A. et al. A management algorithm for patients with intracranial pressure monitoring: the Seattle International Severe Traumatic Brain Injury Consensus Conference (SIBICC). Intensive Care Med 2019; 45: 1783-1794 DOI: 10.1007/s00134-019-05805-9. (PMID: 31659383) CrossrefPubMedGoogle Scholar 11 Rosenthal G, Sanchez-Mejia RO, Phan N. et al. Incorporating a parenchymal thermal diffusion cerebral blood flow probe in bedside assessment of cerebral autoregulation and vasoreactivity in patients with severe traumatic brain injury. J Neurosurg 2011; 114: 62-70 DOI: 10.3171/2010.6.JNS091360. (PMID: 20707619) CrossrefPubMedGoogle Scholar 12 Walter J, Unterberg AW. Zerebrales Monitoring. Intensivmedizin up2date 2019; 15: 331-342 DOI: 10.1055/a-0759-0717. Article in Thieme ConnectPubMedGoogle Scholar 13 Svedung Wettervik T, Beqiri E, Hanell A. et al. Brain tissue oxygen monitoring in traumatic brain injury-part II: isolated and combined insults in relation to outcome. Crit Care 2023; 27: 370 DOI: 10.1186/s13054-023-04659-4. (PMID: 37752602) CrossrefPubMedGoogle Scholar 14 Bullock MR, Chesnut R, Ghajar J. et al. Surgical management of acute subdural hematomas. Neurosurgery 2006; 58 (Suppl. 3) S16-S24 (PMID: 16710968) PubMedGoogle Scholar 15 Bullock MR, Chesnut R, Ghajar J. et al. Surgical management of acute epidural hematomas. Neurosurgery 2006; 58 (Suppl. 3) S7-S15 (PMID: 16710967) PubMedGoogle Scholar 16 Bullock MR, Chesnut R, Ghajar J. et al. Surgical management of traumatic parenchymal lesions. Neurosurgery 2006; 58 (Suppl. 3) S25-S46 DOI: 10.1227/01.NEU.0000210365.36914.E3. (PMID: 16540746) CrossrefPubMedGoogle Scholar 17 Hawryluk GWJ, Rubiano AM, Totten AM. et al. Guidelines for the Management of Severe Traumatic Brain Injury: 2020 Update of the Decompressive Craniectomy Recommendations. Neurosurgery 2020; 87: 427-434 DOI: 10.1093/neuros/nyaa278. (PMID: 32761068) CrossrefPubMedGoogle Scholar 18 Helmrich I, Czeiter E, Amrein K. et al. Incremental prognostic value of acute serum biomarkers for functional outcome after traumatic brain injury (CENTER-TBI): an observational cohort study. Lancet Neurol 2022; 21: 792-802 DOI: 10.1016/S1474-4422(22)00218-6. (PMID: 35963262) CrossrefPubMedGoogle Scholar 19 Jazayeri SB, Maroufi SF, Mohammadi E. et al. Incidence of traumatic spinal cord injury worldwide: A systematic review, data integration, and update. World Neurosurg X 2023; 18: 100171 DOI: 10.1016/j.wnsx.2023.100171. (PMID: 36910686) CrossrefPubMedGoogle Scholar 20 Rau Y, Schulz AP, Thietje R. et al. Incidence of spinal cord injuries in Germany. Eur Spine J 2023; 32: 601-607 DOI: 10.1007/s00586-022-07451-0. (PMID: 36371751) CrossrefPubMedGoogle Scholar 21 Alizadeh A, Dyck SM, Karimi-Abdolrezaee S. Traumatic Spinal Cord Injury: An Overview of Pathophysiology, Models and Acute Injury Mechanisms. Front Neurol 2019; 10: 282 DOI: 10.3389/fneur.2019.00282. (PMID: 30967837) CrossrefPubMedGoogle Scholar 22 Waring 3rd WP, Biering-Sorensen F, Burns S. et al. 2009 review and revisions of the international standards for the neurological classification of spinal cord injury. J Spinal Cord Med 2010; 33: 346-352 DOI: 10.1080/10790268.2010.11689712. (PMID: 21061894) CrossrefPubMedGoogle Scholar 23 Kirshblum SC, Burns SP, Biering-Sorensen F. et al. International standards for neurological classification of spinal cord injury (revised 2011). J Spinal Cord Med 2011; 34: 535-546 DOI: 10.1179/204577211X13207446293695. (PMID: 22330108) CrossrefPubMedGoogle Scholar 24 Dave S, Dahlstrom JJ, Weisbrod LJ. Neurogenic Shock. Treasure Island (FL): StatPearls; 2023 Google Scholar 25 Eldahan KC, Rabchevsky AG. Autonomic dysreflexia after spinal cord injury: Systemic pathophysiology and methods of management. Auton Neurosci 2018; 209: 59-70 DOI: 10.1016/j.autneu.2017.05.002. (PMID: 28506502) CrossrefPubMedGoogle Scholar 26 Roberts TT, Leonard GR, Cepela DJ. Classifications In Brief: American Spinal Injury Association (ASIA) Impairment Scale. Clin Orthop Relat Res 2017; 475: 1499-1504 DOI: 10.1007/s11999-016-5133-4. (PMID: 27815685) CrossrefPubMedGoogle Scholar 27 van Middendorp JJ, Goss B, Urquhart S. et al. Diagnosis and prognosis of traumatic spinal cord injury. Global Spine J 2011; 1: 1-8 DOI: 10.1055/s-0031-1296049. (PMID: 24353930) CrossrefPubMedGoogle Scholar 28 Chiu AK, Bustos SP, Hasan O. et al. Lower Extremity Somatosensory Evoked Potentials Predict Functional Outcomes in Complete Traumatic Cervical Spinal Cord Injury. World Neurosurg 2023; DOI: 10.1016/j.wneu.2023.11.104. (PMID: 38008173) CrossrefPubMedGoogle Scholar 29 Hosman AJF, Barbagallo G. The SCI-POEM Study Group. et al. Neurological recovery after early versus delayed surgical decompression for acute traumatic spinal cord injury. Bone Joint J 2023; 105-B: 400-411 DOI: 10.1302/0301-620X.105B4.BJJ-2022-0947.R2. (PMID: 36924174) CrossrefPubMedGoogle Scholar 30 Sabit B, Zeiler FA, Berrington N. The Impact of Mean Arterial Pressure on Functional Outcome Post Trauma-Related Acute Spinal Cord Injury: A Scoping Systematic Review of the Human Literature. J Intensive Care Med 2018; 33: 3-15 DOI: 10.1177/0885066616672643. (PMID: 27733643) CrossrefPubMedGoogle Scholar 31 Fehlings MG, Vaccaro A, Wilson JR. et al. Early versus delayed decompression for traumatic cervical spinal cord injury: results of the Surgical Timing in Acute Spinal Cord Injury Study (STASCIS). PLoS One 2012; 7: e32037 DOI: 10.1371/journal.pone.0032037. (PMID: 22384132) CrossrefPubMedGoogle Scholar 32 Badhiwala JH, Wilson JR, Witiw CD. et al. The influence of timing of surgical decompression for acute spinal cord injury: a pooled analysis of individual patient data. Lancet Neurol 2021; 20: 117-126 DOI: 10.1016/S1474-4422(20)30406-3. (PMID: 33357514) CrossrefPubMedGoogle Scholar 33 Schnake KJ, Schroeder GD, Vaccaro AR, Oner C. AOSpine Classification Systems (Subaxial, Thoracolumbar). J Orthop Trauma 2017; 31 (Suppl. 4) S14-S23 DOI: 10.1097/BOT.0000000000000947. (PMID: 28816871) CrossrefPubMedGoogle Scholar 34 Dvorak MF, Fisher CG, Fehlings MG. et al. The surgical approach to subaxial cervical spine injuries: an evidence-based algorithm based on the SLIC classification system. Spine (Phila Pa 1976) 2007; 32: 2620-2629 DOI: 10.1097/BRS.0b013e318158ce16. (PMID: 17978665) CrossrefPubMedGoogle Scholar 35 Vaccaro AR, Hulbert RJ, Patel AA. et al. The subaxial cervical spine injury classification system: a novel approach to recognize the importance of morphology, neurology, and integrity of the disco-ligamentous complex. Spine (Phila Pa 1976) 2007; 32: 2365-2374 DOI: 10.1097/BRS.0b013e3181557b92. (PMID: 17906580) CrossrefPubMedGoogle Scholar 36 Mahanes D, Muehlschlegel S, Wartenberg KE. et al. Guidelines for neuroprognostication in adults with traumatic spinal cord injury. Neurocrit Care 2024; 40: 415-437 DOI: 10.1007/s12028-023-01845-8. (PMID: 37957419) CrossrefPubMedGoogle Scholar
{{detailinfo.data.api.data.document[0].apa}}
{{detailinfo.data.api.data.document[0].vancouver}}
{{detailinfo.data.api.data.document[0].harvard}}