AINS Anästhesiologie · Intensivmedizin · Notfallmedizin · Schmerztherapie, Thieme Verlag Heft 7/8-2024, Jahrgang 59) ISSN 1439-1074 Seite(n) 466 bis 478 DOI: 10.1055/a-2332-1423 CareLit-Dokument-Nr: 319946 |
|
Das Schädel-Hirn-Trauma ist ein komplexes Krankheitsbild mit hoher Mortalität. In Teil 1 dieses Beitrags wurden primäre Behandlungsstrategien, hämodynamisches Management und multimodales Monitoring behandelt [1], Teil 2 fokussiert nun sekundäre Behandlungsstrategien, Langzeitergebnis, Neuroprognostik und Chronifizierung. Abstract This two-part article deals with the intensive medical care of traumatic brain injury. Part 1 addresses the primary treatment strategy, haemodynamic management and multimodal monitoring, Part 2 secondary treatment strategies, long-term outcome, neuroprognostics and chronification. Traumatic brain injury is a complex clinical entity with a high mortality rate. The primary aim is to maintain homeostasis based on physiological targeted values. In addition, further therapy must be geared towards intracranial pressure. In addition to this, there are other monitoring options that appear sensible from a pathophysiological point of view with appropriate therapy adjustment. However, there is still a lack of data on their effectiveness. A further aspect is the inflammation of the cerebrum with the “cross-talk” of the organs, which has a significant influence on further intensive medical care. Kernaussagen Beatmungsziel ist primär Normoxie und Normokapnie. Bei einer Hyponatriämie muss zwischen einem zerebralen Salzverlustsyndrom und einem Syndrom der inadäquaten ADH-Sekretion differenziert werden. Die Ernährung sollte wenn möglich enteral erfolgen. SHT-Patienten weisen oftmals eine Dysphagie auf. Unter Berücksichtigung von Hirndruck und Nachblutungsrisiko hat eine Frühmobilisation positive Auswirkungen auf den Genesungsverlauf. Etwa ein Drittel der SHT-Patienten entwickelt eine disseminierte intravasale Koagulation. Zur Thromboseprophylaxe sollte, solange eine Antikoagulation nicht möglich ist, eine pneumatische Beinvenenkompression zum Einsatz kommen. Neuroprognostik sollte im interdisziplinären Behandlungsteam unter Würdigung aller relevanten Befunde erfolgen. Schlüsselwörter Schädel-Hirn-Trauma - sekundäre Behandlungsstrategie - Hämodynamik - multimodales Monitoring - Beatmung - Ernährung - Frührehabilitation Keywords traumatic brain injury - secondary treatment strategy - haemodynamic management - multimodal monitoring - ventilation - nutrition - early rehabilitation 29 July 2024 © 2024. Thieme. All rights reserved. Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany Literatur 1 Haberl A, Adamzik M, Hagedorn A. et al. Aktuelle Aspekte der intensivmedizinischen Versorgung bei Schädel-Hirn-Trauma – Teil 1: Primäre Therapiestrategien, hämodynamisches Management und multimodales Monitoring. Anasthesiol Intensivmed Notfallmed Schmerzther 2024; 59: 450-465 DOI: 10.1055/a-2075-9351. Article in Thieme ConnectPubMedGoogle Scholar 2 Carney N, Totten AM, O’Reilly C. et al. Guidelines for the Management of Severe Traumatic Brain Injury, Fourth Edition. Neurosurgery 2017; 80: 6-15 DOI: 10.1227/NEU.0000000000001432. (PMID: 27654000) CrossrefPubMedGoogle Scholar 3 Gouvea Bogossian E, Cantos J, Farinella A. et al. The effect of increased positive end expiratory pressure on brain tissue oxygenation and intracranial pressure in acute brain injury patients. Sci Rep 2023; 13: 16657 DOI: 10.1038/s41598-023-43703-9. CrossrefPubMedGoogle Scholar 4 Robba C, Rebora P, Banzato E. et al. Incidence, Risk Factors, and Effects on Outcome of Ventilator-Associated Pneumonia in Patients With Traumatic Brain Injury: Analysis of a Large, Multicenter, Prospective, Observational Longitudinal Study. Chest 2020; 158: 2292-2303 DOI: 10.1016/j.chest.2020.06.064. CrossrefPubMedGoogle Scholar 5 Robba C, Poole D, McNett M. et al. Mechanical ventilation in patients with acute brain injury: recommendations of the European Society of Intensive Care Medicine consensus. Intensive Care Med 2020; 46: 2397-2410 DOI: 10.1007/s00134-020-06283-0. CrossrefPubMedGoogle Scholar 6 CRASH-3 trial collaborators. Effects of tranexamic acid on death, disability, vascular occlusive events and other morbidities in patients with acute traumatic brain injury (CRASH-3): a randomised, placebo-controlled trial. Lancet 2019; 394: 1713-1723 DOI: 10.1016/S0140-6736(19)32233-0. (PMID: 31623894) CrossrefPubMedGoogle Scholar 7 Dauwe DF, Gunst J, Vlasselaers D. et al. Propofol-infusion syndrome in traumatic brain injury: consider the ECMO option. Intensive Care Med 2021; 47: 127-129 DOI: 10.1007/s00134-020-06280-3. (PMID: 33052421) CrossrefPubMedGoogle Scholar 8 Unterberg M, Nowak H, Gottschalk A. [Hypercapnic Raised Intracerebral Pressure – Ecmo Therapy Despite Major Intracerebral Haemorrhage]. Anasthesiol Intensivmed Notfallmed Schmerzther 2017; 52: 376-381 DOI: 10.1055/s-0043-103506. (PMID: 28561152) Article in Thieme ConnectPubMedGoogle Scholar 9 McDonald SJ, Sharkey JM, Sun M. et al. Beyond the Brain: Peripheral Interactions after Traumatic Brain Injury. J Neurotrauma 2020; 37: 770-781 DOI: 10.1089/neu.2019.6885. (PMID: 32041478) CrossrefPubMedGoogle Scholar 10 De Vlieger G, Meyfroidt G. Kidney Dysfunction After Traumatic Brain Injury: Pathophysiology and General Management. Neurocrit Care 2023; 38: 504-516 DOI: 10.1007/s12028-022-01630-z. (PMID: 36324003) CrossrefPubMedGoogle Scholar 11 Perkins ZB, Haines RW, Prowle JR. Trauma-associated acute kidney injury. Curr Opin Crit Care 2019; 25: 565-572 DOI: 10.1097/MCC.0000000000000655. (PMID: 31503027) CrossrefPubMedGoogle Scholar 12 Semler MW, Self WH, Wanderer JP. et al. Balanced Crystalloids versus Saline in Critically Ill Adults. N Engl J Med 2018; 378: 829-839 DOI: 10.1056/NEJMoa1711584. (PMID: 29485925) CrossrefPubMedGoogle Scholar 13 Young P, Bailey M, Beasley R. et al. Effect of a Buffered Crystalloid Solution vs Saline on Acute Kidney Injury Among Patients in the Intensive Care Unit: The SPLIT Randomized Clinical Trial. JAMA 2015; 314: 1701-1710 DOI: 10.1001/jama.2015.12334. CrossrefPubMedGoogle Scholar 14 SAFE Stud Investigators, Australian and New Zealand Intensive Care Society Clinical Trials Group, Australian Red Cross Blood Servive. et al. Saline or albumin for fluid resuscitation in patients with traumatic brain injury. N Engl J Med 2007; 357: 874-884 DOI: 10.1056/NEJMoa067514. (PMID: 17761591) CrossrefPubMedGoogle Scholar 15 Cerda-Esteve M, Cuadrado-Godia E, Chillaron JJ. et al. Cerebral salt wasting syndrome: review. Eur J Intern Med 2008; 19: 249-254 DOI: 10.1016/j.ejim.2007.06.019. (PMID: 18471672) CrossrefPubMedGoogle Scholar 16 Leonard J, Garrett RE, Salottolo K. et al. Cerebral salt wasting after traumatic brain injury: a review of the literature. Scand J Trauma Resusc Emerg Med 2015; 23: 98 DOI: 10.1186/s13049-015-0180-5. (PMID: 26561391) CrossrefPubMedGoogle Scholar 17 Dijkink S, Meier K, Krijnen P. et al. Malnutrition and its effects in severely injured trauma patients. Eur J Trauma Emerg Surg 2020; 46: 993-1004 DOI: 10.1007/s00068-020-01304-5. (PMID: 31974669) CrossrefPubMedGoogle Scholar 18 Hartl R, Gerber LM, Ni Q. et al. Effect of early nutrition on deaths due to severe traumatic brain injury. J Neurosurg 2008; 109: 50-56 DOI: 10.3171/JNS/2008/109/7/0050. (PMID: 18590432) CrossrefPubMedGoogle Scholar 19 Martin CM, Doig GS, Heyland DK. et al. Multicentre, cluster-randomized clinical trial of algorithms for critical-care enteral and parenteral therapy (ACCEPT). CMAJ 2004; 170: 197-204 (PMID: 14734433) PubMedGoogle Scholar 20 Elke G, van Zanten AR, Lemieux M. et al. Enteral versus parenteral nutrition in critically ill patients: an updated systematic review and meta-analysis of randomized controlled trials. Crit Care 2016; 20: 117 DOI: 10.1186/s13054-016-1298-1. (PMID: 27129307) CrossrefPubMedGoogle Scholar 21 Zusman O, Kagan I, Bendavid I. et al. Predictive equations versus measured energy expenditure by indirect calorimetry: A retrospective validation. Clin Nutr 2019; 38: 1206-1210 DOI: 10.1016/j.clnu.2018.04.020. (PMID: 29776694) CrossrefPubMedGoogle Scholar 22 Singer P, Blaser AR, Berger MM. et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clin Nutr 2019; 38: 48-79 DOI: 10.1016/j.clnu.2018.08.037. (PMID: 30348463) CrossrefPubMedGoogle Scholar 23 Mehanna HM, Moledina J, Travis J. Refeeding syndrome: what it is, and how to prevent and treat it. BMJ 2008; 336: 1495-1498 DOI: 10.1136/bmj.a301. (PMID: 18583681) CrossrefPubMedGoogle Scholar 24 Nazwar TA, Triangto I, Pringga GA. et al. Mobilization phases in traumatic brain injury. Acute Crit Care 2023; 38: 261-270 DOI: 10.4266/acc.2023.00640. (PMID: 37652856) CrossrefPubMedGoogle Scholar 25 Akira M, Yuichi T, Tomotaka U. et al. The Outcome of Neurorehabilitation Efficacy and Management of Traumatic Brain Injury. Front Hum Neurosci 2022; 16: 870190 DOI: 10.3389/fnhum.2022.870190. (PMID: 35814948) CrossrefPubMedGoogle Scholar 26 Kadry H, Noorani B, Cucullo L. A blood-brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS 2020; 17: 69 DOI: 10.1186/s12987-020-00230-3. (PMID: 33208141) CrossrefPubMedGoogle Scholar 27 Linnerbauer M, Wheeler MA, Quintana FJ. Astrocyte Crosstalk in CNS Inflammation. Neuron 2020; 108: 608-622 DOI: 10.1016/j.neuron.2020.08.012. (PMID: 32898475) CrossrefPubMedGoogle Scholar 28 Takeda H, Yamaguchi T, Yano H. et al. Microglial metabolic disturbances and neuroinflammation in cerebral infarction. J Pharmacol Sci 2021; 145: 130-139 DOI: 10.1016/j.jphs.2020.11.007. (PMID: 33357771) CrossrefPubMedGoogle Scholar 29 Nott A, Glass CK. Immune memory in the brain. Nature 2018; 556: 312-313 DOI: 10.1038/d41586-018-03800-6. (PMID: 29662132) CrossrefPubMedGoogle Scholar 30 Dawson VL, Dawson TM. Nitric oxide neurotoxicity. J Chem Neuroanat 1996; 10: 179-190 DOI: 10.1016/0891-0618(96)00148-2. (PMID: 8811421) CrossrefPubMedGoogle Scholar 31 Goshi N, Morgan RK, Lein PJ. et al. A primary neural cell culture model to study neuron, astrocyte, and microglia interactions in neuroinflammation. J Neuroinflammation 2020; 17: 155 DOI: 10.1186/s12974-020-01819-z. (PMID: 32393376) CrossrefPubMedGoogle Scholar 32 Campolo M, Casili G, Lanza M. et al. The inhibition of mammalian target of rapamycin (mTOR) in improving inflammatory response after traumatic brain injury. J Cell Mol Med 2021; 25: 7855-7866 DOI: 10.1111/jcmm.16702. (PMID: 34245104) CrossrefPubMedGoogle Scholar 33 Ismael S, Ahmed HA, Adris T. et al. The NLRP3 inflammasome: a potential therapeutic target for traumatic brain injury. Neural Regen Res 2021; 16: 49-57 DOI: 10.4103/1673-5374.286951. (PMID: 32788447) CrossrefPubMedGoogle Scholar 34 Geeraerts T, Haik W, Tremey B. et al. [Coagulation disorders after traumatic brain injury: pathophysiology and therapeutic implications]. Ann Fr Anesth Reanim 2010; 29: e177-e181 DOI: 10.1016/j.annfar.2010.06.007. (PMID: 20655167) CrossrefPubMedGoogle Scholar 35 Epstein DS, Mitra B, O’Reilly G. et al. Acute traumatic coagulopathy in the setting of isolated traumatic brain injury: a systematic review and meta-analysis. Injury 2014; 45: 819-824 DOI: 10.1016/j.injury.2014.01.011. (PMID: 24529718) CrossrefPubMedGoogle Scholar 36 Gando S, Sawamura A, Hayakawa M. Trauma, shock, and disseminated intravascular coagulation: lessons from the classical literature. Ann Surg 2011; 254: 10-19 DOI: 10.1097/SLA.0b013e31821221b1. (PMID: 21368657) CrossrefPubMedGoogle Scholar 37 Taylor Jr FB, Toh CH, Hoots WK. et al. Towards definition, clinical and laboratory criteria, and a scoring system for disseminated intravascular coagulation. Thromb Haemost 2001; 86: 1327-1330 (PMID: 11816725) Article in Thieme ConnectPubMedGoogle Scholar 38 Wada T, Shiraishi A, Gando S. et al. Pathophysiology of Coagulopathy Induced by Traumatic Brain Injury Is Identical to That of Disseminated Intravascular Coagulation With Hyperfibrinolysis. Front Med (Lausanne) 2021; 8: 767637 DOI: 10.3389/fmed.2021.767637. CrossrefPubMedGoogle Scholar 39 Lawati KA, Sharif S, Maqbali SA. et al. Efficacy and safety of tranexamic acid in acute traumatic brain injury: a systematic review and meta-analysis of randomized-controlled trials. Intensive Care Med 2021; 47: 14-27 DOI: 10.1007/s00134-020-06279-w. (PMID: 33079217) CrossrefPubMedGoogle Scholar 40 Vestal ML, Hodulik K, Mando-Vandrick J. et al. Andexanet alfa and four-factor prothrombin complex concentrate for reversal of apixaban and rivaroxaban in patients diagnosed with intracranial hemorrhage. J Thromb Thrombolysis 2022; 53: 167-175 DOI: 10.1007/s11239-021-02495-3. CrossrefPubMedGoogle Scholar 41 Connolly SJ, Sharma M, Cohen AT. et al. Andexanet for Factor Xa Inhibitor-Associated Acute Intracerebral Hemorrhage. N Engl J Med 2024; 390: 1745-1755 DOI: 10.1056/NEJMoa2313040. (PMID: 36331504) CrossrefPubMedGoogle Scholar 42 Kornblith LZ, Moore HB, Cohen MJ. Trauma-induced coagulopathy: The past, present, and future. J Thromb Haemost 2019; 17: 852-862 DOI: 10.1111/jth.14450. (PMID: 30985957) CrossrefPubMedGoogle Scholar 43 Ng IC, Barnes C, Biswas S. et al. When is it safe to resume anticoagulation in traumatic brain injury?. Curr Opin Anaesthesiol 2022; 35: 166-171 DOI: 10.1097/ACO.0000000000001117. CrossrefPubMedGoogle Scholar 44 Maas AI, Steyerberg EW, Butcher I. et al. Prognostic value of computerized tomography scan characteristics in traumatic brain injury: results from the IMPACT study. J Neurotrauma 2007; 24: 303-314 DOI: 10.1089/neu.2006.0033. CrossrefPubMedGoogle Scholar 45 McCrea MA, Giacino JT, Barber J. et al. Functional Outcomes Over the First Year After Moderate to Severe Traumatic Brain Injury in the Prospective, Longitudinal TRACK-TBI Study. JAMA Neurol 2021; 78: 982-992 DOI: 10.1001/jamaneurol.2021.2043. (PMID: 34228047) CrossrefPubMedGoogle Scholar 46 Wilkins TE, Beers SR, Borrasso AJ. et al. Favorable Functional Recovery in Severe Traumatic Brain Injury Survivors beyond Six Months. J Neurotrauma 2019; 36: 3158-3163 DOI: 10.1089/neu.2018.6153. (PMID: 31210093) CrossrefPubMedGoogle Scholar 47 Wiles MD. Management of traumatic brain injury: a narrative review of current evidence. Anaesthesia 2022; 77 (Suppl. 1) 102-112 DOI: 10.1111/anae.15608. (PMID: 35001375) CrossrefPubMedGoogle Scholar 48 Katar S, Aydin Ozturk P, Ozel M. et al. The Use of Rotterdam CT Score for Prediction of Outcomes in Pediatric Traumatic Brain Injury Patients Admitted to Emergency Service. Pediatr Neurosurg 2020; 55: 237-243 DOI: 10.1159/000510016. CrossrefPubMedGoogle Scholar 49 Kühnle E, Unterberg M, Köditz R. et al. Ein erstaunlich guter Verlauf bei einer Patientin nach kardiopulmonaler Reanimation trotz Burst-Suppression-Muster und NSE-Werten über 100 μg/l. Neurol Rehabil 2017; 23: 99-102 PubMedGoogle Scholar 50 Edalatfar M, Piri SM, Mehrabinejad MM. et al. Biofluid Biomarkers in Traumatic Brain Injury: A Systematic Scoping Review. Neurocrit Care 2021; 35: 559-572 DOI: 10.1007/s12028-020-01173-1. (PMID: 33403583) CrossrefPubMedGoogle Scholar 51 Slavoaca D, Muresanu D, Birle C. et al. Biomarkers in traumatic brain injury: new concepts. Neurol Sci 2020; 41: 2033-2044 DOI: 10.1007/s10072-019-04238-y. (PMID: 32157587) CrossrefPubMedGoogle Scholar 52 Robinson LR, Micklesen PJ, Tirschwell DL. et al. Predictive value of somatosensory evoked potentials for awakening from coma. Crit Care Med 2003; 31: 960-967 DOI: 10.1097/01.CCM.0000053643.21751.3B. CrossrefPubMedGoogle Scholar 53 Rothstein TL. SSEP retains its value as predictor of poor outcome following cardiac arrest in the era of therapeutic hypothermia. Crit Care 2019; 23: 327 DOI: 10.1186/s13054-019-2576-5. (PMID: 31647028) CrossrefPubMedGoogle Scholar 54 Zafonte RD. Traumatic brain injury: an enduring challenge. Lancet Neurol 2017; 16: 766-768 DOI: 10.1016/S1474-4422(17)30300-9. (PMID: 28920875) CrossrefPubMedGoogle Scholar 55 Dams-O’Connor K, Juengst SB, Bogner J. et al. Traumatic brain injury as a chronic disease: insights from the United States Traumatic Brain Injury Model Systems Research Program. Lancet Neurol 2023; 22: 517-528 DOI: 10.1016/S1474-4422(23)00065-0. CrossrefPubMedGoogle Scholar 56 Pischiutta F, Caruso E, Lugo A. et al. Systematic review and meta-analysis of preclinical studies testing mesenchymal stromal cells for traumatic brain injury. NPJ Regen Med 2021; 6: 71 DOI: 10.1038/s41536-021-00182-8. (PMID: 34716332) CrossrefPubMedGoogle Scholar 57 Latchoumane CV, Betancur MI, Simchick GA. et al. Engineered glycomaterial implants orchestrate large-scale functional repair of brain tissue chronically after severe traumatic brain injury. Sci Adv 2021; 7: eabe0207 DOI: 10.1126/sciadv.abe0207. (PMID: 33674306) CrossrefPubMedGoogle Scholar 58 Lin CC, Chen HY, Tseng CY. et al. Effect of Acupuncture on Recovery of Consciousness in Patients with Acute Traumatic Brain Injury: A Multi-Institutional Cohort Study. Healthcare (Basel) 2023; 11: 2267 DOI: 10.3390/healthcare11162267. CrossrefPubMedGoogle Scholar
{{detailinfo.data.api.data.document[0].apa}}
{{detailinfo.data.api.data.document[0].vancouver}}
{{detailinfo.data.api.data.document[0].harvard}}