AINS Anästhesiologie · Intensivmedizin · Notfallmedizin · Schmerztherapie, Thieme Verlag Heft 7/8-2024, Jahrgang 59) ISSN 1439-1074 Seite(n) 438 bis 449 DOI: 10.1055/a-2075-9315 CareLit-Dokument-Nr: 319817 |
|
Bei einem Schädel-Hirn-Trauma (SHT) spielen neurochirurgische Therapieentscheidungen eine zentrale Rolle, um das akute Überleben zu sichern sowie um sekundäre Hirnschädigungen, die einen großen Einfluss auf die weitere Lebensqualität der Patient*innen haben, abzumildern. Dieser Beitrag beschreibt das neurochirurgische Management bei SHT, das auf umsichtigen und entschlossenen klinischen Entscheidungen basiert und schnelle chirurgische Interventionen erfordern kann. Abstract The neurosurgical management of traumatic brain injury (TBI) plays a critical role in ensuring acute survival and mitigating secondary brain damage, which significantly impacts patients’ quality of life. TBI is defined as an external force impacting the skull, leading to brain injuries and subsequent functional impairments. It is a leading cause of mortality and morbidity, particularly among young individuals. The initial clinical examination is crucial, with external signs like scalp injuries, hematomas, nasal fluid leakage, skull deformities, and neurological deficits providing important clues to injury patterns. Pupil examination is particularly critical, as mydriasis coupled with reduced consciousness may indicate an acute life-threatening increase in intracranial pressure (ICP), necessitating immediate neurosurgical intervention. TBI assessment often utilizes the Glasgow Coma Scale (GCS), classifying injuries as mild (GCS 13–15), moderate (GCS 9–12), or severe (GCS < 9). Even mild TBI can lead to long-term complications. TBI should be viewed as a disease process rather than a singular event. Primary brain damage results from shearing forces on the parenchyma, manifesting as contusions, hematomas, or diffuse axonal injury. Secondary brain damage is driven by mechanisms such as inflammation and spreading depolarizations. Treatment aims not only to secure immediate survival but also to reduce secondary injuries, with ICP management being crucial. Neurosurgical interventions are guided by cranial pathologies, with options including ICP monitoring, burr hole trepanation, craniotomy. In severe TBI cases with refractory ICP elevation, decompressive craniectomy may be performed as a last resort, significantly reducing mortality but often resulting in high morbidity and vegetative states, necessitating careful consideration of indications. Kernaussagen Das schwere Schädel-Hirn-Trauma (SHT) hat eine schlechte Prognose mit einer Mortalität von bis zu 40%, auch initial leichte und mittelschwere SHT sollten nicht unterschätzt werden. Das SHT führt zu primären und sekundären Hirnschädigungen. Nicht beurteilbare Patient*innen mit einer intrakraniellen Pathologie benötigen eine Hirndrucksonde zur Überwachung. Die Konsistenz eines akuten Subduralhämatoms ist „marmeladenähnlich“, sodass bei einer chirurgischen Versorgung immer eine Kraniotomie notwendig ist. Ein chronisches Subduralhämatom ist flüssig und kann daher auch über eine weniger invasive Bohrlochtrepanation entlastet werden. Eine Mydriasis bei Vigilanzminderung kann auf eine Einklemmung hindeuten und ist als absolute Notfallsituation zu werten. Dekompressive Kraniektomien senken die Mortalität, gehen jedoch mit einer hohen Morbidität einher. Schlüsselwörter Schädel-Hirn-Trauma - Kraniotomie - Kraniektomie - Neurochirurgie Keywords traumatic brain injury - craniotomy - craniectomy - neurosurgery 29 July 2024 © 2024. Thieme. All rights reserved. Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany Literatur 1 Capizzi A, Woo J, Verduzco-Gutierrez M. Traumatic brain injury: an overview of epidemiology, pathophysiology, and medical management. Med Clin North Am 2020; 104: 213-238 DOI: 10.1016/j.mcna.2019.11.001. CrossrefPubMedGoogle Scholar 2 Moppett I. Traumatic brain injury: assessment, resuscitation and early management. Br J Anaesth 2007; 99: 18-31 CrossrefPubMedGoogle Scholar 3 Murray GD, Butcher I, McHugh GS. et al. Multivariable prognostic analysis in traumatic brain injury: results from the IMPACT study. J Neurotrauma 2007; 24: 329-337 DOI: 10.1089/neu.2006.0035. CrossrefPubMedGoogle Scholar 4 Maas AI, Stocchetti N, Bullock R. Moderate and severe traumatic brain injury in adults. Lancet Neurol 2008; 7: 728-741 DOI: 10.1016/s1474-4422(08)70164-9. CrossrefPubMedGoogle Scholar 5 Hartings JA, Bullock MR, Okonkwo DO. et al. Spreading depolarisations and outcome after traumatic brain injury: a prospective observational study. Lancet Neurol 2011; 10: 1058-1064 DOI: 10.1016/s1474-4422(11)70243-5. CrossrefPubMedGoogle Scholar 6 CRASH-3 trial collaborators. Effects of tranexamic acid on death, disability, vascular occlusive events and other morbidities in patients with acute traumatic brain injury (CRASH-3): a randomised, placebo-controlled trial. Lancet 2019; 394: 1713-1723 DOI: 10.1016/S0140-6736(19)32233-0. CrossrefPubMedGoogle Scholar 7 Cooper DJ, Rosenfeld JV, Murray L. et al. Decompressive craniectomy in diffuse traumatic brain injury. N Engl J Med 2011; 364: 1493-1502 DOI: 10.1056/NEJMoa1102077. CrossrefPubMedGoogle Scholar 8 Hutchinson PJ, Kolias AG, Timofeev IS. et al. Trial of decompressive craniectomy for traumatic intracranial hypertension. N Engl J Med 2016; 375: 1119-1130 DOI: 10.1056/NEJMoa1605215. CrossrefPubMedGoogle Scholar 9 Roberts I, Yates D, Sandercock P. et al. Effect of intravenous corticosteroids on death within 14 days in 10008 adults with clinically significant head injury (MRC CRASH trial): randomised placebo-controlled trial. Lancet 2004; 364: 1321-1328 DOI: 10.1016/s0140-6736(04)17188-2. CrossrefPubMedGoogle Scholar 10 Bullock MR, Chesnut R, Ghajar J. et al. Surgical management of depressed cranial fractures. Neurosurgery 2006; 58 (Suppl. 3) S25-S46 CrossrefPubMedGoogle Scholar 11 Yellinek S, Cohen A, Merkin V. et al. Clinical significance of skull base fracture in patients after traumatic brain injury. J Clin Neurosci 2016; 25: 111-115 DOI: 10.1016/j.jocn.2015.10.012. CrossrefPubMedGoogle Scholar 12 Cucciniello B, Martellotta N, Nigro D. et al. Conservative management of extradural haematomas. Acta Neurochir 1993; 120: 47-52 DOI: 10.1007/bf02001469. CrossrefPubMedGoogle Scholar 13 Gerard C, Busl KM. Treatment of acute subdural hematoma. Curr Treat Options Neurol 2014; 16: 275 DOI: 10.1007/s11940-013-0275-0. CrossrefPubMedGoogle Scholar 14 Hutchinson PJ, Adams H, Mohan M. et al. Decompressive craniectomy versus craniotomy for acute subdural hematoma. N Engl J Med 2023; 388: 2219-2229 DOI: 10.1056/NEJMoa2214172. CrossrefPubMedGoogle Scholar 15 Feghali J, Yang W, Huang J. Updates in chronic subdural hematoma: epidemiology, etiology, pathogenesis, treatment, and outcome. World Neurosurg 2020; 141: 339-345 DOI: 10.1016/j.wneu.2020.06.140. CrossrefPubMedGoogle Scholar 16 Schucht P, Fischer U, Fung C. et al. Follow-up computed tomography after evacuation of chronic subdural hematoma. N Engl J Med 2019; 380: 1186-1187 DOI: 10.1056/NEJMc1812507. CrossrefPubMedGoogle Scholar 17 Ironside N, Nguyen C, Do Q. et al. Middle meningeal artery embolization for chronic subdural hematoma: a systematic review and meta-analysis. J Neurointerv Surg 2021; 13: 951-957 DOI: 10.1136/neurintsurg-2021-017352. CrossrefPubMedGoogle Scholar 18 Rosenfeld JV, McFarlane AC, Bragge P. et al. Blast-related traumatic brain injury. Lancet Neurol 2013; 12: 882-893 DOI: 10.1016/S1474-4422(13)70161-3. CrossrefPubMedGoogle Scholar
{{detailinfo.data.api.data.document[0].apa}}
{{detailinfo.data.api.data.document[0].vancouver}}
{{detailinfo.data.api.data.document[0].harvard}}